

Otsego Lake Association 2022 annual meeting

Otsego Lake Science Update

Kiyoko Yokota, Ph.D., CLM OLA Technical Advisor Associate Professor of Biology & Biological Field Station Researcher, SUNY Oneonta

Continuous Lake Monitoring Buoy (CLMB) Usually April - Dec

Winter setup (December – April)

Modified from http://www.nexsens.com/wp-content/uploads/2013/02/Two-Point-Mooring-Setup-1024x669.png

Interval Rain M_Avg: 0.02 M_Min: 0.00 M_Max: 4.50 4 2 0 Jul 11 Jul 18	Jui 25	20 Aug 1	0.0 mm 1. 22-08-07 09:45:00 2.	Over 1" of rain of 24-25 Ju <i>E. coli</i> ef in 25 Ju → Glim State Pa closed	' (30 m overnig uly xceeda ly sam mergla ark bea	m) ;ht, ince ple iss ich
Central					nibai piseini	
Chenango Valley SP	7/19/2022	= 21.3	Open Daily	Open		1
Delta Lake SP	7/20/2022	= 140	Open Daily	Open	Clear after resample	1
Gilbert Lake SP	7/25/2022	= 3.1	Open Daily	Open		1
Glimmerglass SP	7/25/2022	= 579.4	Open Daily	Open with Advisory	Exceedance	1
Green Lakes SP - Center Swim Are	a 7/19/2022	= 10	Open Daily	Open		1
Green Lakes SP - East Swim Area	7/19/2022	< 10	Open Daily	Open		1
Green Lakes SP - West Swim Area	7/19/2022	= 50	Open Daily	Open		1
Sandy Island Beach SP	7/19/2022	= 90	Open Daily	Open		1
Selkirk Shores SP (2)	7/20/2022	= 410	Open Weekends/Holiday	s Closed	Exceedance	1
Selkirk Shores SP Beach	7/19/2022	= 130	Open Daily	Open		2
Verona Beach SP	7/19/2022	= 130	Open Daily	Open		1

https://parks.ny.gov/recreation/swimming/beach-results/

Source: NYHABS (type in the URL box in a browser to be redirected to the NYSDEC HAB web page)

GSP beach closed again on **27** July for HAB

Reopened on 3 Aug, closed again on 5 Aug for another HAB

Water temperature (°C)

Otsego Lake Association

HOME WHO WE ARE	GET INVOLVED	MERCHANDISE	PUBLICATIONS	NEWS	EVENTS	PHOTOS	LINKS	CONTACT US
Buoy Data	Re	al Time						GEGO LA
Real Time		Otsego	Lake Buoy					012 IA
		Otsego La at 07-29-2	ike, NY, USA 020 10:30:00	^				P
		Temp_0m	25.54 C					"OCIATI
		Temp_2m	25.53 C					
		Temp_4m	25.53 C					- un
		Temp_6m	25.46 C					
		Temp_8m	22.95 C					
		Temp_10m	19.36 C					A State
		Temp_12m	12.32 C					
		Temp_14m	9.63 C					
		Temp_16m	8.42 C					
		Temp_18m	7.83 C	~				
			Powered By WQData	LIVE				

Quick reference table

Temp		Wind spe	ed
°C	°F	m/s	mph
-40	-40	0	0
-35	-31	5	11

Otsego Lake Buoy								
Te	emp_35m	6.16	С	^				
Te	emp_40m	5.78	С					
Te	emp_42m	5.62	С					
Te	emp_44m	5.55	С					
Te	emp_46m	5.52	С					
Те	emp_48m	5.47	С					
	AirTemp	40.40	С					
	RH	75	%					
	Rel. BP	0.0	hPa					
	WindSp	<mark>5.8</mark>	m/s					
Ма	x WindSp	8.6	m/s					
	WindDir	3277	Degree	~				
		Powered I	By WQData	LIVE				

Barometric pressure sensor and directional compass not working in the current CLMB weather station

- replaced in early 2020 for failed precipitation sensor
- Brand new unit costs \$4K+, more with extended warranty

GPS

Compass

Wind Speed & Direction

Barometric Pressure

Temp

This WATERPROOF unit (~\$2K) can be added to the CLMB to restore the missing measurements.

- Humidity sensor cannot be waterproof
- NOAA uses this double weather station setup for offshore buoys for redundancy

Prevalence of phytoplankton limitation by both nitrogen and phosphorus related to nutrient stoichiometry, land use, and primary producer biomass across the northeastern United States

Abigail S. L. Lewis ^(a), ^a Brian S. Kim ^(b), ^b Hailee L. Edwards ^(a), ^c Heather L. Wander ^(b), ^c Claire M. Garfield ^(a), ^d Heather E. Murphy ^(a), ^e Noah D. Poulin ^(b), ^f Sarah D. Princiotta ^(a), ^g Kevin C. Rose ^(a), ^h Alex E. Taylor ^(a), ⁱ Kathleen C. Weathers ^(b), ^j Courtney R. Wigdahl-Perry ^(b), ^k Kiyoko Yokota ^(b), ^l David C. Richardson ^(b), ^c and Denise A. Bruesewitz ^(b)

Table 1. Lake characteristics, sorted by latitude (Lat), including longitude (Long), elevation above sea level (Elev), mean lake depth (Depth), surface area (SA), total nitrogen (TN), total phosphorus (TP), chlorophyll *a* (Chl-*a*), and percentage of phytoplankton cells identified as chlorophyta (Chloro) and cyanobacteria (Cyano). TN, TP, and Chl-*a* data are reported as mean values for samples collected between pre (late June) and post (early July) experiment. Late June-early July 2017 (at time of experiment)

		•									
Lake	State	Lat (°N)	Long (°W)	Elev (m)	Depth (m)	SA (ha)	TN (µg L ⁻¹)	TP (µg L ⁻¹)	Chl-a (µg L ⁻¹)	Chloro (%)	Cyano (%)
East	ME	44.610	69.785	80	5.5	695	280	15.7	2.7	71	1
Great	ME	44.530	69.900	76	6.4	3450	210	32.9	3.3	82	4
Long	ME	44.497	69.915	72	10.7	1035	100	9.4	3.7	58	18
Snow	ME	44.471	69.733	71	10.1	1494	200	8.8	6.7	59	20
High	VT	43.753	73.153	315	7.9	8	170	3.7	3.2	77	0
Otsego	NY	42.756	74.896	363	25.0	1637	550	7.3	9.0	58	0
Moe	NY	42.430	74.560	497	1.8	16	365	23.1	5.8	20	70
Cassadaga	NY	42.356	79.326	400	3.4	93	150	9.0	6.8	76	21
Bear	NY	42.347	79.385	399	4.6	46	250	13.0	10.4	44	34
Chautauqua	NY	42.162	79.414	399	7.6	2860	190	19.0	4.4	22	77
Mohonk	NY	41.766	74.158	379	6.0	7	190	13.6	2.7	54	18
Minnewaska	NY	41.726	74.235	503	5.7	14	160	4.3	2.8	83	0
Awosting	NY	41.706	74.290	568	5.0	39	88	3.9	1.9	70	0
Waynewood	PA	41.395	75.210	421	6.0	28	650	34.8	47.0	23	75
Lacawac	PA	41.382	75.293	439	5.2	21	100	4.5	4.8	12	86
Giles	PA	41.376	75.050	428	10.1	48	135	2.0	3.2	84	9

OTL 2021 mean TN = 700 μ g L⁻¹ (Waterfield & Albright 2021 – BFS annual report)

Received: 9 April 2021

Revised: 8 June 2021 Accepted: 18 June 2021

DOI: 10.1111/fwb.13791

REVIEW

Cyanobacterial blooms in oligotrophic lakes: Shifting the highnutrient paradigm

Microcystis colony (5 Aug 2022, sampled at NW end of OTL)

REINL ET AL.

Kaitlin L. Reinl¹ | Justin D. Brookes² | Cayelan C. Carey³ | Ted D. Harris⁴ | Bas W. Ibelings⁵ | Ana M. Morales-Williams⁶ | Lisette N. De Senerpont Domis⁷ | Karen S. Atkins⁸ | Peter D. F. Isles⁹ | Jorrit P. Mesman^{5,10} | Rebecca L. North¹¹ | Lars G. Rudstam¹² | Julio A. A. Stelzer^{5,13,14} | Jason J. Venkiteswaran¹⁵ Kiyoko Yokota¹⁶ | Qing Zhan⁷

WILEY- Freshwater Biology

TABLE 1 Summary of cyanobacteria genera, traits, and Morpho Functional Groups (MFGs)^a for documented blooms in oligotrophic systems in Table S1

Таха	Traits summary	MFG (from Salm Padisák, 2007)	naso &
Aphanizomenon gracile	Thick filaments, produce akinetes, can regulate buoyancy	Nostocales (5e)	Can
Dolichospermum sp. (formerly Anabaena sp.)	Thick filaments, produce akinetes, can regulate buoyancy Was dominant in a localized diffuse bloom in 2018	Nostocales (5e)	fix N ₂
Gloeotrichia echinulata	Thick filaments, forms large colonies, produce akinetes, can regulate buoyancy	Nostocales (5e)	
Microcystis sp.	Large vacuolated colonies, can regulate buoyancy, large surface area:volume allows slower sinking from surface, over-wintering dormant cells	LargeVacC (5b)	Cannot fix Na
Planktothrix agardhii	Thin filaments, can regulate buoyancy, over-wintering dormant cells	FilaCyano (5a)	

Freshwater Biology

High N in OTL is promoting non-N₂ fixing *Microcystis*?

Pencil tip for size reference

Microcystis colonies have various shapes – this is just an example

Invasive, non-native mussels in OTL altering habitat structure, biogeochemical cycling and food web

Zebra mussel (2007-)

Quagga mussel (2018/20-)

- in water ~80 days
- February 28th May 19th 2021

Slides modified from NYSFOLA presentation by Stickney, Smith, Minissale, Lord and Yokota (2022)

QM: Quagga mussel ZM: Zebra mussel

Shallow (4 ft)

Medium (12-14 ft)

Deep (21-24 ft)

QM: Quagga mussel ZM: Zebra mussel

QM: Quagga mussel

Age (yrs)

- QM juveniles successfully colonized new surfaces in late Feb – mid-May
- QM larger than ZM at the same age
- QM is outcompeting ZM both horizontally and vertically in OTL

Quagga mussel established

Temporary clear water phase due to increased & selective filtering

Altered P cycling (Vanni 2021)

Short-circuit in biogeochemical cycling

Increase in cyanobacteria, invasive plants & algae, other nonnatives & pathogens Clogged water intake pipe

Village of Cooperstown water supply intake pipe encrusted with quagga & zebra mussels **Copyrighted Material**

Winner of the Anthony Luka

Award

"AN IMPECCABLY RESEARCHED PORTRAYAL OF A FASCINATING STORY."-ANNA M. MICHALAK, NATURE

DEATH AN

THE GREAT

LAKES

LIFE OF

THE

The Death and Life of the Great Lakes

By Dan Egan

Available as an audiobook (~12 hrs), too

FINALIST FOR THE PULITZER PRIZE

DANEGAN

Mussel Pains – Episode 1023

March 26, 2021 - by GLN Editor

Invasive mussels are hastening the deterioration of historic Great Lakes shipwrecks, like the submerged Prins Willem V off Milwaukee. Zebra... Also an excellent video (27 min) on YouTube on this topic – search for "mussel pains Great Lakes"

New York Safe Boating Education Program

Boating Safety Certificates

Who needs a boating safety certificate?

https://parks.ny.gov/recreation/boating/education.aspx

Anyone operating a Personal Watercraft (JetSki[™], Wave Runner[™], etc.) must have a boating safety certificate, and be at least 14 years of age or older.

Source:

Under a new law, known as Brianna's Law, all motor boat operators:

If you were born on or after:	You will need a boating safety certificate when				
	operating a motorized vessel in:				
January 1, 1988	2022				
January 1, 1983	2023				
January 1, 1978	2024				
All operators of motorized vessels, regardless of age, will need					
a boating safety certificate by January 1, 2025					

NY Safe Boating Course (8 hrs, classroom instruction) <u>OR</u> One of the NYS-approved online courses (3+ hours)

Children can take a course as long as they are 10 years old on the first day of course.

Tips:

- If you complete an online course and lose your certificate, you must work with the online course vendor to get a replacement (not NYS Parks or DMV). Getting a NYS Adventure License will get your online course completion recorded in the DMV system.
- If you are planning to become a NY Safe Boating Instructor, you must have completed a classroom course with another NY Safe Boating Instructor. Online courses do not count. Other eligibility requirements apply.

Covers NYS aquatic invasive species control regulations!

Acknowledgement

- Otsego Lake Association volunteer hours, ice-resistant steering system for 2 BFS boats, other supplies, PR support
- Otsego Lake technical assistance: Holly Waterfield, Matt Albright, Edward Irwin
- SUNY Oneonta BFS Volunteer Dive Team
- National Science Foundation
- School of Sciences & Biological Field Station, SUNY Oneonta
- Logistical support/approval from: Otsego County Conservation Association; Glimmerglass Condominium Homeowners' Association; Otsego County Sheriff's Office; NYS Parks, Recreation & Historic Preservation; Belmonte-Flynn Family, VanHeusen Family, collaborators from the SUNY Lakes Ecological Observatory Network (SUNY LEON), Global Lake Ecological Observatory Network (GLEON), and Northeast GLEON (NE GLEON); SUNY BFS Summer Interns

Thank you for your interest and support for Otsego Lake research! OLA supports the CLMB project and live data streaming.

Kiyoko.Yokota@oneonta.edu @YokotaLimnoLab

http://employees.oneonta.edu/yokotak/YokotaLimnoLab/